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Abstract
As a continuation of our previous work, we derive the optimal flux phase
which minimizes the ground state energy in the one-dimensional many-
particle systems, when the number of particles is odd in the absence of
on-site interaction and external potential. Moreover, we study the relationship
between the flux on the ring and the spin of the ground state through which we
derive some information on the sum of the lowest eigenvalues of one-particle
Hamiltonians.

PACS numbers: 05.50.+q, 71.10.Fd
Mathematics Subject Classification: 82B20

1. Introduction

The flux phase problem is to derive the optimal flux distribution which minimizes the ground
state energy of the system of many fermions. There are a few physical significances of this
problem, one of which is that the diamagnetic inequality, which widely holds for one-particle
Hamiltonians, is sometimes reversed for many-particle ones. As for the mathematical results,
we refer to [3, 4, 6] where many cases are studied at half-filling for bipartite rings, lattices, and
ones with some particular geometry such as the tree of rings and hidden trees. Bethe-ansatz
calculations are done in [10] where they study whether the current response to the variation
of the magnetic flux is diamagnetic or paramagnetic. In this paper, we continue our study to
derive the optimal flux of the Hubbard Hamiltonian on the ring � := {1, 2, . . . , L} (L+1 ≡ 1)
defined by

H :=
∑

σ=↑,↓

L∑
x=1

tx,x+1c
†
x+1,σ cx,σ + (hc) +

∑
σ=↑,↓

L∑
x=1

V (x)nx,σ +
L∑

x=1

U(x)nx,↑nx,↓

where cx,σ

(
c
†
x,σ

)
is the annihilation (creation) operator satisfying the canonical

anticommutation relations and nx,σ := c
†
x,σ cx,σ · tx,x+1 �= 0 and arg tx,x+1 = θx ∈ [0, 2π)

such that
∑L

x=1 θx = ϕ (mod 2π ). U(x), V (x) ∈ R. Eigenvalues of H are independent of the
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choice of {θx}Lx=1 such that
∑L

x=1 θx = ϕ so that we write H = H(ϕ). We consider H(ϕ) on
the spin- 1

2N -fermion Hilbert space HN which is the span of

BN := {
c†x1,σ1

c†x2,σ2
· · · c†xN ,σN

|vac〉 : xj ∈ �, σj = ↑,↓, j = 1, 2, . . . , N
}
.

Let EN(ϕ) be the ground state energy of H(ϕ):

EN(ϕ) := min {〈�,H(ϕ)�〉 : � ∈ HN, 〈�,�〉 = 1}.
Our aim is to derive the optimal flux ϕopt which minimizes EN(ϕ): EN(ϕopt) = minϕ∈[0,2π)

EN(ϕ). Uniqueness of ϕopt, which is not discussed in this paper, holds when T := {|tx,x+1|}Lx=1
has some periodicity, or T and V satisfy some particular relation [8]. In [7], we studied the
case where N is even. The result there was

Theorem 1.1 (optimal flux on the ring: even case). Let N � L be even:
(1) U < ∞: ϕopt = (

N
2 + 1

)
π (L is even) = Nπ

2 (L is odd).
(2) U = ∞: ϕopt = 2n

N
π, n = 0, 1, . . . , N − 1.

The key ingredient of the proof of theorem 1.1 was to regard H(ϕ) as a hopping Hamiltonian
on BN and compute the flux through the circuit in BN of ‘minimal’ length. The distinction
between 0 and π comes from counting how many times a particle exchanges its location with
others in these circuits. When U = ∞, such exchanges are not possible and hence there is no
distinction. In fact, E∞

N (ϕ) := limU↑∞ EN(ϕ) has period1 2π
N

and H∞(0) is gauge equivalent
to H∞(π).2

We turn to the case where N is odd and U = 0. Some computations of examples imply
that ϕopt depends on U in general and there seems to be no general rule except the half-filling
case.

Theorem 1.2 (optimal flux on the ring: odd case). Let N = L be odd and U = V = 0. Then
EN(ϕ) has period π and is minimized if ϕ = π

2 , 3π
2 .

Remark 1.1. The same result is deduced in [9] by a different argument. For the translation
invariant case (tx,x+1, Ux are constant), Bethe-ansatz calculation has been done [10] and the
result of theorem 1.2 is the same as they obtained. Since we set U = 0, only the free
particle case is considered in theorem 1.2. So our contribution is that the hopping coefficients
T = {tx,x+1}Lx=1 can be arbitrary which is not covered by the Bethe-ansatz solutions. Therefore,
in the free case, the hopping disorder has no effect on the optimal flux.

Remark 1.2. If U = ∞ and N (<L) is odd, the argument of the proof of theorem 1.1.(2)
proves that E(ϕ) has period 2π

N
and ϕopt = 2n

N
π (L even), 2n+1

N
π (L odd), n = 0, 1, . . . , N −1.

Remark 1.3. The following example implies that the conclusion of theorem 1.2 is not true in
general if V �= 0 so that the potential disorder may have some effect on the optimal flux. Let
N = L = 5 and let

|tx,x+1| =




1 (x = 1, 4)

t (x = 3) V (x) =
{

0 (x �= 3, 4)

t (x = 3, 4)
t > 0.

√
2 (x = 2, 4)

1 This fact and its implications are discussed in [1, 10].
2 H∞(ϕ) := PH(ϕ)P and P := ∏

x∈�(1 − nx,↑nx,↓) is the orthogonal projection onto the space of states with no
doubly occupied sites.
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Since the Hamiltonian H(ϕ) contains terms of the form t
(
c
†
3,σ + c

†
4,σ

)
(c3,σ + c4,σ ), when t is

sufficiently large, eigenvalues of H(ϕ) approach to that of H ′(ϕ + π) in which N = 5, L = 4
and |tx,x+1| = 1 for any x. The ground state energy of H ′(ϕ + π) is minimized if and only if
ϕ = π ± 4 arcsin 1√

5
. On the other hand, we believe theorem 1.2 is true when U �= 0 as the

computations in translation invariant cases imply [10].

Remark 1.4. At finite temperature, optimal flux is different from π
2 , 3π

2 in general. In fact, in
the canonical ensemble, the partition function P(ϕ) := Tr[e−βH(ϕ)] (restricted on Sz = 1/2
subspace for simplicity) is a complicated function of ϕ if β is large, and ϕ = π

2 , 3π
2 do not

necessarily maximize it, although they are always the critical points. This is different from the
case of an even number of particles where P(ϕ) is maximized for any β > 0 by the optimal
flux given in theorem 1.1 [7]. In the grand canonical ensemble, the average particle number
depends on ϕ, β and the absolute ground state does not lie at half-filling unless ϕ = π

2 , 3π
2 .

In [4], it is shown that the grand canonical partition function with zero chemical potential is
maximized if ϕ = 0, π .

Next, we study the spin of the ground state. In what follow, we assume L is even for simplicity;
the results for odd L follow by exchanging 0 and π in each statement of the theorems given
below. The proof of theorem 1.1, together with the Lieb–Mattis argument [5], proves the
following fact3.

Theorem 1.3 (ground state is unique with spin zero). Let U < ∞, N even and ϕ = (
N
2 + 1

)
π

(mod 2π ). Then the ground state of H(ϕ) is unique and S = 0.

Remark 1.5. If ϕ = Nπ
2 (mod 2π ) and |tx,x+1| = 1, U = V = 0, then the ground state of

H(ϕ) is not unique and S = 0, 1. This contrasts with the Lieb–Mattis theorem [5] which
states that the ground state is always unique and S = 0 in the one-dimensional chain with
open boundary condition (and thus no flux is present so that one can freely adjust the sign of
the matrix elements). The example above shows, if ϕ is not optimal, that the boundary effect
is not negligible in general. We also remark that such a ‘non-unique’ situation is not stable
under the variation of T , V and U . For instance, once Ux < 0 for any x, then the ground state
is again unique and S = 0 [2]. On the other hand, theorem 1.3 states, if ϕ is optimal, that this
uniqueness property is stable which holds for any T , V and U .

Remark 1.6. When N = L is odd, U = V = 0, and ϕ = π
2 , 3π

2 , then the ground state is
unique with S = 1/2 apart from the (2S + 1)-degeneracy.

When U = ∞, there is some relationship between the flux ϕ and the spin of the ground state.
Let {ej (ϕ)}Lj=1 be the eigenvalues (in increasing order) of the one-particle Hamiltonian h(ϕ)

corresponding to H(ϕ) (that is, H(ϕ) is an operator on H1).

Theorem 1.4 (spin and flux are related). Let N(<L) be even and U = ∞:
(1) H∞(0) does not have the ground state with S = N

2 if and only if
∑N

j=1 ej (π) <
∑N

j=1 ej (0).

(2) H∞(0) does not have the ground state with S = N
2 .

Remark 1.7. Theorem 1.4 implies that the spin of the ground state changes when the flux
changes. For instance, let N = 4n + 2. Then H∞(π) has a ground state with S = N

2 while
H∞(0) does not, but has one with S = 0.

3 Theorem 1.3 is pointed out by Professor E Lieb to whom the author is grateful.
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Remark 1.8. The inequality
∑N

j=1 ej (π) �
∑N

j=1 ej (0) follows from theorem 1.1. So the

statement
∑N

j=1 ej (π) <
∑N

j=1 ej (0) has something to do with the uniqueness question of the

optimal flux. Theorem 1.4 states that an ‘analytical’ statement
∑N

j=1 ej (π) <
∑N

j=1 ej (0) is
equivalent to a property of the spin of the ground state, which is robust under the variation of
T , V and U .

Finally, we discuss a connection between the ferromagnetic (S = N
2 ) ground state of H∞(π)

and the singlet (S = 0) one of H∞(0). Since H∞(π) is gauge equivalent to H∞(0), there is a
gauge transformation g under which H∞(π) is transformed to H∞(0).4 Because the ground
state of H∞(π) is degenerate (it has at least all even (odd) spins for N = 4n(4n + 2)), it is
not clear how each ground state of H∞(π) is transformed under g. In fact, when N = 4n,
the ground states of H∞(0) can have all spins such that S < N

2 and g�
π,∞
f does not have

fixed spin. However, if N = 4n + 2, we have the following theorem, which states that the
ferromagnetic ground state of H∞(π) is directly connected to the singlet ground state of
H∞(0) via the gauge transformation mentioned above.

Theorem 1.5 (a connection between ferromagnetic and singlet states). Let N = 4n + 2 and
let �

π,∞
f be the ferromagnetic ground state of H∞(π). Then there is a gauge transformation

g∞ under which H∞(π) is transformed to H∞(0) and g∞�
π,∞
f is a singlet ground state of

H∞(0).

The singlet state g∞�
π,∞
f is described as follows. If we write �

π,∞
f as a linear combination

of elements of BN , the coefficients are the same for every configuration of spins for each fixed
location of particles. The gauge transformation g∞ then puts (−1) alternately on every cyclic
permutation of spins. Therefore, the singlet ground state of H∞(0) is a sort of ‘spiral’ state in
the configuration space BN produced from the ferromagnetic one.

In section 2, we give proof of theorems. Theorem 1.2 is proved by reducing the problem
to the case of an even number of particles using the ideas of Floquet analysis. We remark that
a simple adaptation of the method of proof of theorem 1.1 would lead us to a complicated
computation of the partition function P(ϕ) of H(ϕ). Theorem 1.3 is proved by putting the
arguments in [5, 7] together. The key fact is that the ground states of HU �=0 and of HU=0 are
both unique and not orthogonal to each other. The ground state of HU=0 has spin zero because
it is unique. To prove theorem 1.4 (1), we use the Perron–Frobenius theorem which implies
that H∞(π) has the ferromagnetic state which makes it possible to derive the ground state
energy of EN(π), which is equal to EN(0) since H∞(0) and H∞(π) are gauge equivalent.
Then the equivalence follows from comparing ferromagnetic energies of H∞(0) and H∞(π).
Theorem 1.4 (2) follows from comparing the spin of the ground state of H∞(0) with that of
H 0

∞(0) where |tx,x+1| = 1 and V = 0. To prove theorem 1.5, we note that for U < ∞,H(0)

is gauge equivalent to HPF whose matrix elements (BN as its basis) are non-positive. The
ground states of both are unique and that of H(0) has S = 0 while that of HPF is positive5.
When U goes to infinity, the ground state of H(0) tends to the singlet one of H∞(0) while the
ground state of HPF tends to the ferromagnetic one of H∞(π).

Section 3 is devoted to the discussion, and in the appendix, we prove a simple lemma
which appears in the proof of theorem 1.1 (2).

4 g is not unique, since H∞(ϕ) is not irreducible.
5 A state � is positive (non-negative) means that � is expanded as � = ∑

j ajψj , ψj ∈ BN with aj > 0 (aj � 0)

for all j .
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2. Proof of theorems

First of all, we provide the proof of theorem 1.1(2) for the sake of completeness, because in
[7], we only asserted ϕopt = 0, π .

Proof of theorem 1.1(2). We assume L is even; the proof for odd L follows similarly. We
always work on Sz = 0 subspace of HN and let G = Range P be the space of states with no
doubly occupied sites. Let G = G1 ⊕ G2 ⊕ · · · ⊕ GK be the decomposition of G such that
Hj(ϕ) := H(ϕ)|Gj

is irreducible. We choose the basis Bj of Gj as

Bj := {
c†x1,σ1

c†x2,σ2
· · · c†xN ,σN

|vac〉 : x1 < x2 < · · · < xN, σj = ↑,↓}
. (2.1)

Since U = ∞, exchange of particles is not allowed so that for each c
†
x1,σ1c

†
x2,σ2 · · · c†xN ,σN

|vac〉 ∈
Bj , the spin configuration (σ1, σ2, . . . , σN) of that can be obtained by the cyclic permutation6

of a fixed spin configuration (τ1, τ2, . . . , τN). There exists p (= 2, . . . , N) such that
(τ1, τ2, . . . , τN) is invariant under the cyclic permutations of p-times. Because we are working
in Sz = 0 subspaces, p must be even. In this case, we say Gj has period p. We rearrange

Gj w.r.t. their period and rewrite, G = ⊕N
p=2 ⊕Jp

j=1 Gp

j , where Gp

j has period p with B
p

j as
its basis which is chosen like (2.1). Let H

p

j (ϕ) := H(ϕ)|Gp

j
which we regard as a hopping

Hamiltonian on B
p

j . The flux �
p

j of these circuits in B
p

j with ‘minimal’ length7 is given by

�
p

j = pϕ + p(N − 1)π ≡ pϕ (mod 2π).

The first term comes from the hopping of particles and the second one comes from the fact
that if a particle hops from site L to site 1, we have to add π to the flux (as discussed in the
proof of theorem in [7]). Therefore the lowest eigenvalue E

p

j (ϕ) of H
p

j (ϕ) is minimized if

ϕ
p

j = 2πn
p

, n = 0, 1, . . . , p − 1. Since p is even, they always include 0, π . Hence

E
p

j (π) = E
p

j

(
2πn

p

)
n = 0, 1, . . . , p − 1. (2.2)

If ϕ = π , by taking the gauge such that tx,x+1 < 0 (x = 1, 2, . . . , N − 1), and tN,1 > 0,
the matrix elements of H

p

j (ϕ) in terms of the basis B
p

j are non-positive. Hence, by the
Perron–Frobenius theorem, we have a ferromagnetic ground state �f of H∞(π) so that for
some

{
a

p

j

}
j,p

, it is written as

�f =
K∑
j,p

a
p

j ψ
p

j (2.3)

where ψ
p

j is the lowest eigenvector of H
p

j (π). Since it has maximal spin, it can also be written
as

�f =
∑

x1,...,xN

bx1,...,xN

∑
σ1,...,σN

c†x1,σ1
c†x2,σ2

· · · c†xN ,σN
|vac〉

with bx1,...,xN
> 0. Therefore for any fixed x1, x2, . . . , xN , every spin configuration

(σ1, σ2, . . . , σN) appears in (2.3), so that a
p

j �= 0 for any j, p. Hence the lowest eigenvalue
E

p

j (π) are the same for any j, p:

E
p

j (π) = E∞
N (π). (2.4)

6 The one-time cyclic permutation of a configuration (τ1, τ2, . . . , τN ) is defined by (τ2, τ3, . . . , τN , τ1).
7 ‘Minimal’ means circuits having least length whose flux depends on ϕ. If L � 4, the length of circuits of least
length is always 4, but fluxes there are always zero and do not affect the discussion here.
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By the diamagnetic inequality, we have

E
p

j (π) � E
p

j (ϕ) ϕ ∈ [0, 2π ]. (2.5)

The assertion ϕopt = 2πn
N

then follows from (2.2), (2.4), (2.5).
The claim that E(ϕ) has period 2π

N
is proved by the following lemma.

Lemma 2.1. EN
k (ϕ) � E

p

j (ϕ) for any p = 2, . . . , N and j = 1, 2, . . . , Jp.

The proof of lemma 2.1 is given in the appendix for completeness, which is a simple proof of
the fact ‘the hard core boson has the lowest energy’. Lemma 2.1 also gives an alternative and
simpler proof of theorem 1.1(2), for EN

j (ϕ) has period 2π
N

. �

Proof of theorem 1.2. Let {ej (ϕ)}Lj=1 be the eigenvalue (in increasing order) of H(ϕ)

on H1, that is, eigenvalues of the corresponding one-particle Hamiltonian h(ϕ), and let
FK(ϕ) := ∑K

j=1 ej (ϕ) be the sum of the K lowest eigenvalues. Let N = 2n + 1. By
hole–particle transformation for down spins and by the assumption that V = 0, we have
EN(ϕ) = Fn(ϕ) + Fn+1(ϕ) = Fn(ϕ) + Fn(ϕ + π). In what follows we show

Fn(ϕ) + Fn(ϕ + π) = F 2L
2n (2ϕ) (2.6)

where F 2L
K (ϕ) is the sum of the K lowest eigenvalues of the Hamiltonian Ĥ 2L(ϕ) given by

extending H(ϕ) to �̂ := {1, 2, . . . , 2L} periodically, i.e.

t̂x,x+1 =
{
tx,x+1 (x = 1, . . . , L)

tx−L,x+1−L (x = L + 1, . . . , 2L)
V̂ = Û = 0.

Once (2.6) is proved, theorem 1.1 leads us to the conclusion8.

Proof of equation (2.6). By choosing the gauge, we assume θx = 0 (x �= L),= ϕ (x = L).
Let

{
ψ

ϕ

j

}L

j=1 be the eigenvector of h(ϕ) and set

ψ̂
ϕ

j (x) :=
{

ψ
ϕ

j (x) (x = 1, 2, . . . , L)

eiϕψ
ϕ

j (x) (x = L + 1, . . . , 2L).{
ψ̂

ϕ

j , ψ̂
ϕ+π

j

}L

j=1 are linearly independent and are eigenvectors of Ĥ 2L(2ϕ) with eigenvalues

{ej (ϕ), ej (ϕ + π)}Lj=1. Then (2.6) follows from the fact that the ground state can be chosen

from the Sz = 1
2 subspace of HN , or alternatively, from the theory of one-dimensional periodic

Schrödinger operators. �

Remark 2.1. The argument of the above proof shows Fn(0)+Fn(π)

2 � Fn

(
π
2

)
in general.

Proof of theorem 1.3. As usual, we work on Sz = 0 subspace. We fix ϕ = (
N
2 + 1

)
π and

write H = H(U) to specify the U -dependence of H . For x, y ∈ BN , let sxy := 〈x|H(U)|y〉.
We regard H(U) as a hopping Hamiltonian on BN : (H(U)ψ)(x) = ∑

y∈BN
sxyψ(y). Let

(H−(U)ψ)(x) = −∑
y∈BN

|sxy |ψ(y). Then by the argument in the proof of theorem in [7],
H(U) and H−(U) have same fluxes on each circuit in BN so that they are gauge equivalent:
there exists a gauge transformation g on BN such that H(U) = g−1H−(U)g. Since sxy does
not depend on U for x �= y, g is independent of U . By the Perron–Frobenius theorem, the
ground state �−(U) of H−(U) is unique and so is the ground state �(U) of H(U). Since
�−(U) and �−(0) are both positive and thus not orthogonal to each other, and since �(U)

8 Equation (2.6) and theorem 1.3 show that the ground state is unique if ϕ = π
2 , 3π

2 which proves the statement in
remark 1.6.
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and �−(U) are related via the U -independent gauge transformation, �(U) and �(0) have the
same spin and thus it suffices to derive the spin of �(0).

Now we regard H(0) as an operator on HN and let e1 � e2 � · · · � eL, ψ1, ψ2, . . . , ψL

(∈CL) be eigenvalues and corresponding eigenvectors of one-particle Hamiltonian of H (that
is, H(0) as an operator on B1). Since the ground state �(0) of H(0) is unique, it is written by

�(0) =
L∏

j=1,σ=↑,↓
�j,σ |vac〉 where �j,σ =

L∑
x=1

ψj,σ (x)c†x,σ

which has spin zero. �
Proof of theorem 1.4. (1) By theorem 1.1(2), E∞

N (0) = E∞
N (π). The matrix elements

of H∞(π) in terms of the basis BN are non-positive so that the Perron–Frobenius theorem
shows that H∞(π) has a ground state with S = N

2 . Hence E∞
N (0) = E∞

N (π) = ∑N
j=1 ej (π).

Therefore the statement that H∞(0) does not have a ground state with S = N
2 is equivalent to∑N

j=1 ej (π) <
∑N

j=1 ej (0).
(2) The essential ingredient of the proof is that the gauge transformation g, which

transforms H∞(π) to H∞(0), transforms the ferromagnetic ground state �
π,∞
f of H∞(π)

to those with S < N
2 . In fact, g transforms �

π,∞
f into that which is antisymmetric under

the cyclic permutations. Let G := RangeP be the subspace of HN of states with no doubly
occupied sites and let G = ⊕K

j=1Gj be the decomposition of G such that Hj(π) := H∞(π)|Gj

is irreducible as in the proof of theorem 1.1 (2). Since the matrix element of Hj(π) is non-
positive, the Perron–Frobenius theorem shows that the lowest eigenvector ψj(π) is unique and
positive. Moreover, H∞(π) has a ground state � with S = N

2 . That is, there exists {aj }Kj=1

such that � = ∑K
j=1 ajψj (π) is a ground state of H∞(π) with S = N

2 . Fix distinct points
x1, x2, . . . , xN ∈ �. Let

A := {
c†y1,σ1

· · · c†yN ,σN
|vac〉 ∈ G : yi = x1, . . . , xN , σ =↑,↓}

Aj := A ∩ Bj

and let PA be the orthogonal projection onto the subspace of G spanned by A. Since � has
S = N

2 , PA� = a
∑

k ρk , ρk ∈ A for some a > 0 which implies that PAψj (π) = bj

∑
k νjk ,

νjk ∈ Aj for some bj > 0. We normalize ψj(π) such that bj = 1. Since H∞(π) and
H∞(0) are gauge equivalent, there exists a gauge transformation g such that ψj(0) = gψj (π).
Suppose H∞(0) has a ground state �̃ with S = N

2 . Then �̃ = ∑K
j=1 cjψj (0) for some {bj }Kj=1

and

S2(PA�̃) = N

2

(
N

2
+ 1

)
(PA�̃). (2.7)

Let H 0
∞(ϕ) be the Hamiltonian with |tx,x+1| = 1 and V = 0. Let ψ0

j (π) be the corresponding
lowest eigenvector of H 0

∞(π)|Gj
. Normalize ψ0

j (π) by the same procedure as above. Since
H 0

∞(π) is transformed to H 0
∞(0) by the same gauge transformation g,

PAψ0
j (0) = PAψj (0). (2.8)

On the other hand, �̃0 := ∑K
j=1 cjψ

0
j (0) is a ground state of H(0) which satisfies

S2(PA�̃0) = N

2

(
N

2
+ 1

)
(PA�̃0) (2.9)

by (2.7), (2.8). Equation (2.9) contradicts the fact that H 0
∞(0) has no ground state with S = N

2 ,

since we have
∑N

j=1 ej (π) <
∑N

j=1 ej (0) in this case. �

Proof of theorem 1.5. Let U < ∞. Then there is a gauge transformation g which is
independent of U such that H(0) = gHPF g−1. HPF is the Hamiltonian whose matrix elements
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(in terms of BN ) are non-positive and have the same absolute values as those of H(0). The
ground states �0

s , �PF of H(0),HPF satisfy

�0
s = g�PF (2.10)

and �0
s has S = 0 while �PF is positive. When U goes to infinity, limU↑∞ �0

s = �0,∞
s

which is a singlet ground state of H∞(0). On the other hand, limU↑∞ HPF = H∞(π) and
moreover, limU↑∞ �PF = �

π,∞
f where �

π,∞
f is the ferromagnetic ground state of H∞(π).

This follows from the observation that both �PF and �
π,∞
f are positive and the other ground

states of H∞(π) are not non-negative. Letting U → ∞ in (2.10), we have

�0,∞
s = g∞�

π,∞
f g∞ = g|G

which is the desired conclusion. �

3. Discussion

In this paper, we study the flux phase problem, that is, to minimize the ground state energy
w.r.t. the flux, in the one-dimensional many-particle systems. In particular, we studied the
case in which the particle number is odd at half-filling, and deduced that the optimal flux is
π
2 , 3π

2 , in the absence of on-site interaction. Such results are already derived by the Bethe-
ansatz calculation [10], and thus our contribution is to show that this is also true even if the
hopping coefficients are not constant, namely the hopping disorder has no effect on the optimal
flux. Moreover, unlike the case of even number of particles, we find that something unusual
happens: theorem 1.2 is not necessarily true if V �= 0, implying that the potential disorder
may have some effect on the optimal flux, or if the temperature is nonzero (remarks 1.3 and
1.4). This also implies that the method of proof of theorem in [7] may not apply to the case of
odd numbers of particles in general.

Next, we study the spin of the ground state and showed that it is zero when the flux is
optimal. When it is not optimal, the spin is not zero and changes its value depending on the
hopping coefficients T , the on-site interaction U and the external potential V , implying that it
is not stable. It also implies that the conclusion of the Lieb–Mattis theorem is not true for such
cases so that the boundary effect is not negligible. Nevertheless, if the flux is optimal, the spin
is always zero for any T ,U and V , implying that it is always stable under the perturbation.

Moreover, we study the case in which U = ∞ and found a relation between the spin of the
ground state and the sum of the lowest eigenvalues of the one-particle Hamiltonian. Since the
spin is a ‘robust’ property, we can derive some information on the sum of lowest eigenvalues
which holds for any T ,U and V . We also discussed the ‘spiral state’: a singlet ground state
of H∞(0) which is obtained by a simple gauge transformation of a ferromagnetic state of
H∞(π). These results seem to reveal interesting connection between the flux threading the
system and spin of the ground state.
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Appendix. Proof of lemma 2.1

Let �1 be the eigenvector of H
p

j with eigenvalue E. It suffices to construct the eigenvector
�0 of HN

k with the same eigenvalue E. We write �1, �0 in terms of the linear combination
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of their basis:

�1 =
∑

x1,...,xN ,σ1,...,σN

a(x1, σ1; x2, σ2; . . . ; xN, σN)c†x1,σ1
c†x2,σ2

· · · c†xN ,σN
|vac〉

�0 =
∑

x1,...,xN ,σ1,...,σN

b(x1, σ1; x2, σ2; . . . ; xN, σN)c†x1,σ1
c†x2,σ2

· · · c†xN ,σN
|vac〉

where in �1, c
†
x1,σ1c

†
x2,σ2 · · · c†xN ,σN

|vac〉 ∈ B
p

j and similarly for �0. Fix x1 < x2 < · · · < xN .
Pick any spin configuration (σ1, σ2, . . . , σN) and we determine b(x1, σ1; x2, σ2; . . . ; xN, σN)

by the following steps. Pick any fixed element c
†
x1,τ1c

†
x2,τ2 · · · c†xN ,τN

|vac〉 ∈ BN
k . Then for any

other elements c
†
x1,σ1c

†
x2,σ2 · · · c†xN ,σN

|vac〉 ∈ BN
k , (σ1, σ2, . . . , σN) is the cyclic permutation

of (τ1, τ2, . . . , τN) and since BN
k has period N , we can find k (1 � k � N) uniquely

such that (σ1, σ2, . . . , σN) = (τk, τk+1, . . . , τN , τ1, τ2, . . . , τk−1). Pick and fix any element
c
†
x1,τ

′
1
c
†
x2,τ

′
2
· · · c†

xN ,τ ′
N
|vac〉 ∈ B

p

j . We define b(x1, σ1; x2, σ2; . . . ; xN, σN) as

b(x1, σ1; x2, σ2; . . . ; xN, σN) := a(x1, τ
′
k; x2, τ

′
k+1; . . . ; xN, τ ′

k−1).

It is straightforward to check that �0 is the eigenvector of HN
j with eigenvalue E. Lemma 2.1

is proved.
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